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Wave phenomena in a one-dimensional boiling bed are considered. A dispersion 
equation is derived which shows that instability in a boiling bed is weak in a fair- 

ly great number of cases. The Korteweg-devries-Burgers equation is obtained 
for waves of small but finite amplitude in the bed. Oscillations at the fronts of 
gas bubbles in a boiling bed are investigated. The linear increase of density fluc- 
tuations with distance from the bed bottom and the jump of fluctuation at the 
upper boundary are explained. 

The mathematical analysis of stability of equations of a boiling bed appeared 

in several publications (see. e. g., [l - 33) in which it is shown that a strong in- 
stability exponentially increasing with time occurs in such beds. However no al- 

lowance was made in these for the boundedness of the bed in space. and the exis- 

tence of homogeneous boiling beds at low fluidization rates is not explained. 
Here the analysis of dispersion and the investigation of wave phenomena in a 

boiling bed is based on expansion in a small parameter introduced in [4], 

The simple model of the boiling bed described in [l] is used for deriving the 
dispersion equation. The pseudo-gas viscosity and the pressure of pseudo-gas in 
particles are neglected, and the viscosity of the fluidizing gas is taken into ac- 
count only in the interaction force between particles and gas. The model is one- 

dimensional, i. e. all functions depend only on the vertical component 5. 

In this case the input equations are of the form 

-g+gL*, -g - & [(I - e) z?] L. 0 

a,=;?. v eHo 
2 z Pf , _ e (v - u) 

where ps and Pf are the densities of particles and gas, respectively ; e is the effective 

volume occupied by particles ; u and v are the velocities of particle and gas, respect- 

ively ; p is the pressure; G is the acceleration of gravity ; Q, is the model force of 
phase interaction ; a is the particle radius ; v is the kinematic viscosity of gas, and Ho. 
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is a dimensfonless constant of the charge. Viscous terms are disregarded (except the 
inner-phase friction at), owing to the comparatively low viscosity of the fluidizing gas 
and of the particle pseudo-gas. 

We introduce the dimensionless quantities t’, u’, u’, fI’, g’ and a defined by 

where L is a linear dimension of the equipment, li is the gas velocity ahead of the 

screen, and of and pR are the densities of gas and particles, respectivelt. Unless other- 
wise stated, dimensionless quantities are used below and primes are omitted. 

We pass to dimensionless variables, eliminate the pressure IT, and obtain for functions 
e, u and v the system of three equations 

K =pg, @=R-” 

R = 9vHoaL SC&o L 1 Pf UV 

2Va* 
=- =---y--q-, u=pl-’ Re, y 2 

The parameter R7 defined in terms of Re, - the Reynolds number-related to parti- 

cles, was introduced in a three-dimensional problem in [4]. In many cases parameter 
II is considerable because La- l exceeds a-l by several orders of magnitude, while the 
Reynolds number Re, is not very great fn a real equipment. Subsequently we assume 
that R >> 1. 

To clarify the meaning of the term (1 - a)K we analyze the solution of system (1) 
which corresponds to the stationary homogeneous mode 

E=e g = eons& Y =It ug = con&, u=o 

Elementary computation shows that uK= [(I - a)K]“” and aK = 1 - ux-1. In di- 
mensional variables the formula for eg is of the form 

a 9aN0 1,s 
c,--?-- 1-_1mV 

L I 

Note that aK is inde~ndent of the bed linear dimension. This is important for the sub- 

sequent analysis. 

The dispersion equation for the linearized system (1) is of the form 

s2 = 3k (eKuK) $- ip (1 - sK)% [“ex (Q + kzQa -+ (1 - e,)a’l (2) 

where SZ is the frequency and k is the wave number. Equation (2) defines two branches 
of function Q = B (k). The first of these is determined by expanding 
powers of the small parameter p 

D (k) = ck -Jr ipplk2 - flap@ + 0 (fJ3), c = 3exuK 

p1= (I- @p&Q (1 - 3afP + 9a&, 

PO = Pi (1 - eg)yr( (3 +’ 3CXE,Y, - aug} 

Q in positive 

(3) 
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It is easily verified that in this case 0 < Ed < 1, (1 - uK)eK = 1, and I) < a < 1. 

Both dispersion coefficients piand I.$ are greater than zero. The sewnd branch 61 = 

Qd (k) is of the form 

9, (k) = - + a -- [C i- Al k + 0 (6) 
(4) 

i, e. f& corresponds to waves rapidly attenuating with time and propagating against the 

fluidizing gas flow at the phase velocity c + A ; because of this, waves which obey the 

dispersion law (4) inside the bed are not considered here. However they must be taken 
into account in the vicinity of the bed upper boundary (see below). 

Since in dimensionless variables the depth of bed and the bed phase velocity c =3eKvK 
(for not excessively fluidized beds) are of the order of unity. the group velocity cg of a 

wave packet and, consequently, the time of existence of a perturbation in the bed are 
also of the order of unity, The dispersion law (4) implies that a perturbation during its 

existence in the bed increases linearly with time as 1 + BP&%, i.e. the instability is 
weak. It should be borne in mind that the wave number k is bounded, since for the con- 

sidered model of the boiling bed only wave lengths not shorter than the scale of averag- 

ing used in the derivation of input equations have any meaning. 
The law of dispersion implies that the amplitude of perturbations localized in space 

- wave packets - increases linearly with melt progress through the bed. This accords 
with the linear increase of small density fluctuations along the bed height which is ob- 
served in experiments. 

Waves moving from the depth of the bed are reflected by the upper boundary and are 

attenuated in accordance with the dispersion law (4).Thus in the narrow region close to 

the upper boundary perturbations are the result of two wave systems : waves arriving from 
the depth of the bed and those reflected from the upper boundary : this may explain the 

characteristic burst of fluctuations near the upper boundary [5], The preceding analysis 
also indicates that the failry narrow region near the upper boundary does not affect waves 
of moderate amplitude inside the bed. 

The considered model provides a simple description of waves of small but finite am- 

plitude. It follows from (1) that 

u = 2) - VK8 (2 - e)2 - p (1 - &)‘J [~+++-u($+v$)] (5) 

Using the method of successive approximations, we obtain for u an expression interms 
of E and u that is accurate to within j3s ; it corresponds to the dispersion branch (3), i. e. 

to waves propagating upward in the bed without attenuation. The equations of conserva- 

tion of mass of particles and gas together with Eq, (5) imply that 

et + VEX + VxE - fe‘ET = Li (61 

e, + VEX - (1 -- E)YX = 0 (7) 

where D is the sum of terms of order p and fis which take into acwunt dispersion and 
dissociation. If U is disregarded. we have a model of a boiling bed without dispersion 
and dissociation. Such model was considered earlier in 143. where solutions with conser- 

vative discontinuities represent simple waves. It is reasonable to assume that the effect 
of dispersion and dissociation in the case of waves of finite but small amplitudes is small. 
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In analyzing solutions of quasi-simple waves [6] this can be taken into account by set- 
ting?J= F (e) + tt, (8, t), where P (a) is the solution of the kind of a simple wave in a 

system without dissipation and dispersion. 1. e, in (6) U = 0 and 9 (z, t) is a correc- 

tion of the order of the dispersion terms. Waves propagating inside the bed in a direction 
opposite to the flow of gas are neglected owing to their rapid attenuation. 

We assume that e = eK + a’, where a’ is small, and linearize terms of order fi and 

8”. 
By linearizing Eqs. (6) and (7) we rapidly obtain ulz = D, hence 

et’+ [v - (1 - a) fE’laZ’ = (1 - eg)D 

With the use of iterations we reduce all derivatives of E with respect to t in D to 

derivatives with respect to 5, from which follows 

at’ + [v - (1 - 8) fc’l 8%’ = - Pplei, - PpL_ 

Taking into consideration that in a model without dispersion [4f u = f (a) + 1 and 

f fe) = ux3e (i -- e)“, and rejecting terms of order BE%’ , we obtain 

at’ + h (a) eX’ = - 8ul”L - ~VZ&&.~ (8) 

h (e) = -vg (i - eJ2 (1-4~) + 1 

Function h (e) m~otoni~lly increases from a = 0 to e = ‘is and monotoni~lly 
decreases from t = r/s to e=l ; h (eg) = 3~~ vK is the speed of sound in the bed 

with perturbations propagating in the direction of gas flow (3). Subsequently we consider 
only deviations from the stationary state E = eK of the bed, and write (8) in the form 

of the Korteweg - de Vries - Burgers equation 

al + h (eK + M, + BIL~~,,~ + B%2eXXX = 0 (9) 

It can be assumed that a perturbation originating at the screen becomes stabilized and 
is transformed into some stationary wave motion defined by E& (9) inside the bed, Ac- 

cording to f6 , 7] the solution of Eq. (9) is sought in the form E = E (x -_wt), where W 

is the wave propagation velocity, W - e = S > 0 , and 6 is small; c = 3e,~, is the 

speed of sound in the bed with perturbations propagating in the direction of the tluidiz- 
ing gas flow. For x -+ 0 we have E = e’ = a” = 0 , i.e. the perturbation has already 

detached itself from the screen. Below, the screen coordinate is I = 0 and the right- 
hand semiaxis x corresponds to the bed interior. It can be readily shown that E satisfies 
the equation 

H (E, + 8) - WE + &L~E’ + @2psd’ = 0, H (e) = 8 - (1 - e)/ (10) 

Singular points of Eq. (10) are determined by the condition 

--we+ H (Ed+ e) = 0 (111 

Equation (11) has a trivial solution E = 0 which corresponds to thestationary state of the 
bed. Since waves of small amplitude are considered, only roots slightly different from 
E = 0 are of interest. Note that for E = 0 the tangent to the curve of function H (e, Jr 

8) is at an angle whose tangent is h (eKf = c, where c is the speed of sound. The roots 
of (11) correspond to the intersection of the straight line Y = We with the curve y = 
H (e, + E). Since w - c = 6 is small, hence within the segment U < E < I--E~ 
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there are, generally, only three solutions. 
Three cases must be distinguished, viz : (1) eK < ;1/8, (2) eX > l/s, and (3) eK - l/s. 

Taking into account that in cases (1) and (2) we deal with states that are not much dif- 
ferent from stationary, only the smallest root need to be taken into consideration and, 
COIUeWently, it is possible to linearize function h (eK + e) . Case (3) is not considered 

here because of its indefiniteness, which appears to be the consequence of some defect 
of the model. 

Equation (11) now assumes the form (c - Wfe + Ii&, (e&s2 = 0 whose singular 

points are e = 0 and 
2& ;i --e,? 6 

a*=-= l- 2ek -Y 
(12) 

The singular points are of the following kinds: (1) for e = 0 we have a saddle point ; 
(2) for E = e, we have either (a) a stable node when p1 < pL, or (b) a stable focal point 

when p1 > per where pc = 2 (~6)‘~~. For eK < ‘I, we have 8, > 0, and for eK > 11~ , 
e* < 0. The considered solution corresponds to the separatrix emanating in the phase 

plane from the coordinate origin (a saddle point). The related equation for P1 > PC 
corresponds to a packet of a~en~ting (slack) “aligns” in the bed ES]. Parameter % 
corresponds to the mean total amplitude in the packet; it is subsequently called the 
amplitude of the packet. Now (12) defines the relation between the packet amplitude 
and its propagation velocity. If in the absence of packets PC < pi, then e* plays the 

part of amplitude and (11) defines the relation between the propagation velocity and the 
amplitude. The space scale of the wave process defined by the quasi-stationary solution 

of the described kind can only be determined numerically, It can be assumed that this 
scale is not great, since the dissipative term in Eq. (9) is of the order 8, and the disper- 

sion term of order fi2. 
The considered here quasi-stations solutions can be used for determining the pattern 

of strong dis~ntinuities - shock waves - in a boiling bed. The solution of Eq. (10) lead- 

ing from one point of equilibrium to another, i. e. a separatrix, is to be sought in such 
cases p]. For sK <I/* it is possible to join only compression discontinuities (upstream 

of the discontinuity e is smaller than downstream of it), and for eK > 1/Z only rarefac- 

tion discontinuities. For p, > PI the discontinuity is oscillatory, A one-dimensional 
bubble or piston may be considered as a pair of discontlnuities with the density of the 

bed between them lower than outside. It follows from the above that when such piston 

moves through the bed with the mean value of eIC < 1/z and PLc > Pl, the forward boun- 
dary is oscillating and the rear one is clear-cut (it does not join), while for eK > “/s and 

Ptc > PI the rear bo~da~ is oscillating. 
Clear definitions and blurrings at the forward boundary of bubbles in a boiling bed 

were often observed experimentally 181. Several papers dealt theoretically with this sub- 
ject (see, e.g., [2, 31). There are notpublications in which oscillations at bubble bound- 

aries are considered, although some experiments indicate their presence (see, e. g. , the 

photographs in [S]). 
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A development of the theory of the dynamic edge effect [l, 21 applied to the 
free vibrations of thin elastic orthotropic shells is given. It is assumed that the 
lines of curvature, the principal directions of elasticity and the lines along which 
the boundary conditions are given all coincide. The properties of the character- 
istic roots of the equations governing the kind of damping rate of the edge effects 
are investigated. Necessary and sufficient conditions are established for nonde- 
generation of the edge effects as a function of relationships between the princi- 
pal curvatures and the shell elasticity coefficients. 

1, Let us use the asymptotic method [l, 2] to evaluate the free vibrations frequen- 
ties of a thin elastic orthotropic shell whose principal directions of the material elasti- 
city coincide with the coordinate lines q, zs, which are the lines of principal curva- 
tures. We assume compliance with the conditions for applicability of equations of Vla- 
sov type and let us write the dimensionless equations for the preeminently bending vib- 
rations modes as p] 

(1.1) 


